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Chronic, low-grade adipose tissue inflammation is a key etiological mechanism linking the increasing inci-
dence of type 2 diabetes (T2D) and obesity. It is well recognized that the immune system and metabolism
are highly integrated, and macrophages, in particular, have been identified as critical effector cells in the
initiation of inflammation and insulin resistance. Recent advances have been made in the understanding
of macrophage recruitment and retention to adipose tissue and the participation of other immune cell pop-
ulations in the regulation of this inflammatory process. Here we discuss the pathophysiological link between
macrophages, obesity, and insulin resistance, highlighting the dynamic immune cell regulation of adipose
tissue inflammation. We also describe the mechanisms by which inflammation causes insulin resistance
and the new therapeutic targets that have emerged.
Introduction
Type 2 diabetes (T2D) has become a global epidemic, with huge

social and economic costs. The World Health Organization esti-

mates that 3.4 million deaths per year worldwide are attributable

to T2D, a number that is predicted to increase in the next decade

(http://www.who.int/mediacentre/factsheets/fs312/en/).

Approximately $175 billion is spent on diabetes-related health-

care annually in the United States alone (Centers for Disease

Control and Prevention, 2011). The majority of cases of diabetes

(80%) are attributable to the parallel increasing rates of obesity

(http://www.diabetes.org.uk/About_us/News_Landing_Page/

Diabetes-and-obesity-rates-soar/) and thus extensive research

efforts have been made to elucidate the mechanistic links be-

tween these two conditions. Nutrient excess and adiposity acti-

vate several metabolic pathways implicated in the development

of insulin resistance, including inflammatory signaling, lipotoxic-

ity, aberrant adipokine secretion (Sartipy and Loskutoff, 2003;

Steppan et al., 2001; Yamauchi et al., 2001), adipose tissue

hypoxia (Cramer et al., 2003), endoplasmic reticulum (ER) stress

(Ozcan et al., 2004; Urano et al., 2000), and mitochondrial

dysfunction (Furukawa et al., 2004). A detailed description of

all of these processes is beyond the scope of this piece and there

are excellent recent reviews on these subjects (Samuel and

Shulman, 2012; Hotamisligil, 2010; Johnson and Olefsky, 2013;

Lee and Ozcan, 2014). Here, we will focus on obesity-associated

chronic inflammation, which we believe is a key, unifying com-

ponent of insulin resistance. Indeed, several of the metabolic

processes mentioned above, such as ER stress, hypoxia, and

lipotoxicity, can all converge on the development of metabolic

inflammation.

Obesity-associated metabolic inflammation is unlike the

paradigm of classical inflammation—an acute inflammatory

response, defined by the characteristic signs of redness,

swelling, and pain. Instead, it is a form of ‘‘sterile inflammation’’

produced in response tometabolic (rather than infectious) stimuli

and is chronically sustained at a subacute level without adequate

resolution.

The first evidence for a pathophysiological link between

obesity, inflammation, and insulin resistance was provided
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more than a century ago, when it was observed that the anti-

inflammatory drug salicylate, the principle metabolite in aspirin,

had beneficial effects on glucose control in diabetic patients

(Williamson, 1901). This concept was revisited in 1993 when

Hotamisligil et al. (1993) demonstrated that tumor necrosis

factor-a (TNF-a) (a proinflammatory cytokine) is secreted, in

increased amounts, from the adipose tissue of obese rodents

and is a potent negative regulator of insulin signaling. The

complexity of this inflammatory response was realized, some

10 years later, when two groups independently demonstrated

that obesity is associated with the accumulation of macro-

phages in adipose tissue, which were found to be the principal

source of inflammatory mediators, including TNF-a, expressed

by this metabolic tissue (Weisberg et al., 2003; Xu et al., 2003).

A number of reports have now demonstrated the key importance

of macrophage-elicited metabolic inflammation in insulin resis-

tance. During obesity this immune cell population differs, not

only in number, but also in inflammatory phenotype and tissue

localization. In this review we will focus on the pathophysiolog-

ical connections between obesity, macrophages, and insulin

resistance. In particular, we will describe the mechanisms by

which macrophages are recruited to metabolic tissues, mediate

inflammation, and impact insulin signaling. We will also discuss

current anti-inflammatory therapeutic strategies for the treat-

ment of type 2 diabetes (T2D).

Inflammatory Signaling
The secretion of inflammatory cytokines and chemokines by

adipose tissue macrophages (ATMs) extends beyond TNF-a

and includes interleukin-6 (IL-6), IL-1b, monocyte chemotactic

protein 1 (MCP-1, CCL2), and macrophage inhibitory factor

(MIF) (Olefsky and Glass, 2010). Production of these inflam-

matory factors is under the transcriptional control of two key

intracellular inflammatory pathways, c-Jun N-terminal kinase

(JNK)-activator protein 1 (AP1) and IKappa B kinase beta (IKK)-

nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB), which differ in their upstream signaling components

but converge on the induction of overlapping inflammatory

genes. These two inflammatory pathways are initiated by almost
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Figure 1. Inflammatory Signaling Pathways
Implicated in the Development of Insulin
Resistance
Activation of TLR2, TLR4, and/or tumor necrosis
factor receptor (TNFR) leads to the activation of
NF-kB and JNK signaling. The serine kinases IKKb
and JNK phosphorylate IRS-1 and IRS-2, inhibit-
ing downstream insulin signaling. In addition, the
activation of IKKb leads to the phosphorylation
and degradation of the inhibitor of NF-kB, IkB,
which permits the translocation of NF-kB to the
nucleus. Similarly, the activation of JNK leads to
the formation of the AP-1 transcription factor.
Nuclear NF-kB and AP-1 transactivate inflamma-
tory genes, which can contribute to insulin resis-
tance in a paracrine manner. Abbreviations are as
follows: PI3K, phosphoinositide 3-kinase; RIP,
receptor interacting protein; Myd88, myeloid dif-
ferentiation primary response gene-88; SFA,
saturated fatty acid; TRADD, TNF receptor-asso-
ciated death domain; TRAF2, TNF receptor-
associated factor-2; TRIF, TIR domain containing
adaptor protein inducing IFN-g. Adapted from
Osborn and Olefsky (2012).
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all of the mediators implicated in the development of insulin

resistance, including oxidative and ER stress, saturated fatty

acids, and inflammatory cytokines, highlighting their importance

in the pathogenesis of disease (Solinas and Karin, 2010).

IKKb-NF-kB signaling is initiated by activation of IKKb and sub-

sequent phosphorylation of the inhibitor of NF-kB (IkB). In the

noninflammatory state, IkB retains NF-kB in an inhibitory cyto-

plasmic complex. After inflammatory stimuli, IkB is phospho-

rylated, dissociates from NF-kB, and undergoes degradation.

This permits the translocation of free NF-kB to the nucleus,

where it binds to cognate DNA response elements, leading to

transactivation of inflammatory genes. Similarly, activation of

JNK-AP-1 signaling by inflammatory mediators leads to phos-

phorylation and activation of JNK, which then phosphorylates

the N terminus of c-Jun. This initiates a switch of c-Jun dimers

for c-Jun-c-Fos heterodimers, which ultimately stimulate tran-

scription of inflammatory target genes. Both JNK1 and IKK

signaling are upregulated in adipose (Weisberg et al., 2003; Xu

et al., 2003), skeletal muscle (Bandyopadhyay et al., 2005), and

liver (Cai et al., 2005) from insulin-resistant rodents and humans.

Obesity activates JNK and NF-kB signaling by several mecha-

nisms. For example, IL-1 and TNF-a instigate inflammatory

signaling through classical activation of their cell surface recep-

tors (Olefsky and Glass, 2010). Alternatively, the inflammatory

process can be initiated by activation of pattern recognition

receptors (PRRs), which include Toll-like receptors (TLRs) and

NOD-like receptors (NLRs). PRRs sense exogenous pathogen-

associated molecular patterns (PAMPs), including microbial

derived LPS, peptidoglycan, and bacterial DNA, as well as endo-
Immuni
genous damage-associated molecular

patterns (DAMPs), such as saturated fatty

acids (Nguyen et al., 2007), ATP, and heat

shock proteins. Of the TLRs, TLR4 has

been shown to play a particularly impor-

tant role in initiating saturated fatty acid-

mediated macrophage inflammation.

Indeed, hematopoietic cell-specific dele-
tion of TLR4 protects mice from high fat diet (HFD)-induced insu-

lin resistance (Orr et al., 2012; Saberi et al., 2009).

Obesity-associated PAMPs and DAMPs have also been

shown to activate the nucleotide-binding domain and leucine-

rich-repeat-containing (NLR) protein NLRP3 inflammasome, a

multiprotein complex comprised of a PRR (NLRP3), a protease

(caspase 1), and an adaptor protein. Several studies have shown

that obesity is associated with the activation of the inflamma-

some in adipose tissue (Stienstra et al., 2012; Vandanmagsar

et al., 2011). Upon activation of the inflammasome, caspase 1

initiates the maturation of pro-IL-1b and pro-IL-18. Consistent

with the proinflammatory effects of these cytokines, genetic

ablation of components of the NLRP3 inflammasome amelio-

rates insulin resistance (Stienstra et al., 2011; Vandanmagsar

et al., 2011). In addition to receptor-mediated pathways, inflam-

matory signaling can be stimulated by cellular stresses such as

reactive oxygen species (ROS), ER stress, hypoxia, and lipotox-

icity, which can all be enhanced in the obese insulin-resistant

state (Cramer et al., 2003; Furukawa et al., 2004; Samuel and

Shulman, 2012; Urano et al., 2000; Lee et al., 2014).

Mechanisms of Insulin Resistance in Inflammation
Numerous studies have shown that metabolic inflammation

mediates insulin resistance through the inhibition of insulin

signaling. Insulin (I) binding to its receptor (R) initiates a compli-

cated signaling cascade (Figure 1). In brief, IR activation

stimulates the recruitment and phosphorylation of several IR

substrates including insulin receptor substrate 1-4 (IRS-1-4),

src homology 2 containing protein (SHC), and growth factor
ty 41, July 17, 2014 ª2014 Elsevier Inc. 37
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receptor-bound protein 2 (Grb-2), which leads to the activation

of two downstream signaling pathways. The phosphatidylinosi-

tol 3-kinase pathway (PI3K)-protein kinase B (PKB) pathway

plays amajor role in eliciting the effects of insulin on metabolism,

increasing skeletal muscle and adipocyte glucose uptake,

glycogen synthesis, and lipogenesis, while suppressing hepatic

glucose production. Activation of the Ras-mitogen activated

protein kinase (MAPK) pathway mediates the effect of insulin

on mitogenesis and cell growth.

Inflammatory signaling can interfere with insulin action through

several transcriptional and posttranscriptional mechanisms.

First, stress-activated serine kinases, such as JNK and IKKb,

phosphorylate IRs and IRS proteins at inhibitory sites, attenu-

ating downstream insulin signaling (Gao et al., 2002; Ozes

et al., 2001). Accordingly, abrogation of inflammatory signaling

with salicylates, which inhibit IKKb, prevents inhibitory IRS-1

phosphorylation, restoring insulin sensitivity (Gao et al., 2003).

Second, the transcription factors NF-kB and AP-1 regulate the

expression of several metabolic genes that influence insulin

sensitivity. For example, inflammatory mediators induce the

expression of suppressor of cytokine signaling (SOCS) proteins

which bind to the insulin receptor and impair its ability to phos-

phorylate IRS-1 and IRS-2 proteins (Emanuelli et al., 2000;

Kawazoe et al., 2001; Ueki et al., 2004). Conversely, NF-kB

represses the expression of several components of the

insulin signaling pathway including glucose transporter type 4

(GLUT4) (Stephens and Pekala, 1991), IRS-1, and AKT (Ruan

et al., 2002). Third, JNK signaling can regulate cytokine expres-

sion posttranscriptionally by causing stabilization of mRNAs that

encode inflammatory cytokines (Chen et al., 2000). Finally, a

relatively recent discovery is that inflammatory signals may

also influence insulin sensitivity by regulating microRNA (miRNA)

expression. For example, TLR4 signaling represses the expres-

sion of miR-223, which negatively regulates inflammatory gene

expression (Chen et al., 2012; Haneklaus et al., 2013). Several

miRNAs are dysregulated in obesity and this topic has been

the subject of several recent reviews (Haneklaus et al., 2013; Qu-

iat and Olson, 2013).

Inflammation can also affect insulin action indirectly by modu-

lating various metabolic pathways, resulting in the production of

‘‘second messengers,’’ such as fatty acids, that promote insulin

resistance. For example, TNF-a stimulates adipocyte lipolysis

contributing to elevated serum free fatty acid (FFA) concentra-

tions, which can lead to decreased insulin sensitivity. Addition-

ally, inflammatory signaling induces the expression of genes

involved in lipid processing, including the enzymes that synthe-

size ceramide, a sphingolipid that inhibits insulin activation of

AKT (Holland et al., 2011; Schubert et al., 2000). Indeed, mice

lacking TLR4 are protected from ceramide accumulation and in-

sulin resistance after the infusion of saturated fatty acids

(Holland et al., 2011), and treating HFDmice with myriocin, an in-

hibitor of ceramide production, improves glucose tolerance

(Ussher et al., 2010). Inflammatory mediators also stimulate de

novo hepatic lipogenesis, contributing to steatosis and elevated

serum lipid levels. Treatment of mice with TNF-a or IL-1b in-

creases the activity of acetyl-CoA carboxylase, the rate-limiting

step in lipid synthesis (Feingold and Grunfeld, 1992). Similarly,

transgenic overexpression of IKK-b in hepatocytes stimulates

de novo hepatic lipogenesis (van Diepen et al., 2011).
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NF-kB and AP-1 also induce the expression of inflammatory

cytokines, which can then act in an autocrine or paracrine

manner, initiating a feed-forward loop to exacerbate insulin

resistance. In addition, it is thought that if the magnitude of cyto-

kine production is great enough, they can ‘‘leak’’ out of the adi-

pose tissue and potentiate insulin resistance in an endocrine

fashion in peripheral tissues such as muscle and liver (Osborn

and Olefsky, 2012). In line with this concept, elevated concentra-

tions of TNF-a, IL-6, and MCP-1 have been observed in the

serum of individuals with diabetes and prospective studies

have shown that circulating inflammatory markers are indicative

of future disease risk. However, further studies are required to

determine whether circulating cytokines are sufficient to induce

insulin resistance or whether they are merely a marker of tissue

inflammation.

Obesity and Adipose Tissue Macrophages
Adipose tissue macrophages (ATMs) can span the spectrum

from an anti-inflammatory to a proinflammatory phenotype.

The nomenclature to define different macrophage populations

is variable and somewhat confusing, as described in the accom-

panying review (Murray et al., 2014, this issue). Here we refer to

anti-inflammatory macrophages as M2-like or alternatively acti-

vatedmacrophages (AAMs), and proinflammatory macrophages

asM1-like or classically activatedmacrophages (CAMs) (Olefsky

and Glass, 2010). AAMs predominantly make up the tissue-

resident macrophages dispersed throughout lean adipose

and support adipose homeostasis (Odegaard et al., 2007).

Conversely, during obesity, the balance is tilted toward the

recruitment of CAMs, which are primarily found in a ring-like

configuration around large dying adipocytes, termed crown-

like structures (CLSs) (Lumeng et al., 2008). These two macro-

phage populations are phenotypically and functionally distinct.

M2 macrophages express CD11b, F4/80, CD301, and CD206

and promote local insulin sensitivity through production of anti-

inflammatory cytokines, such as IL-10 (Olefsky and Glass,

2010). In contrast, M1 macrophages express CD11c in addition

to CD11b and F4/80 and secrete inflammatory factors including

TNF-a, IL-1b, IL-6, leukotriene B4 (LTB4), and nitric oxide (NO)

(Lumeng et al., 2007).

The recruitment, differentiation, and/or survival of these

macrophage subpopulations are contingent on the local signals

produced within adipose tissue. The alternative activation of

tissue-resident macrophages is mediated by the type 2 cytokine

IL-4, which is expressed at high amounts in lean adipose tissue

(Wu et al., 2011). IL-4 induces the expression of peroxisome pro-

liferator activated receptor gamma (PPARg) (Huang et al., 1999)

and peroxisome proliferator activated receptor delta (PPARd)

(Kang et al., 2008), which are required for maintenance of the

alternatively activated state (Desvergne, 2008; Odegaard et al.,

2007). Conversely, in the obese state, inflammatory mediators

released from adipose tissue, such as saturated fatty acids, cy-

tokines, LTB4, and interferon-g (IFN-g), induce the recruitment of

monocytes and/or their differentiation into M1-like macro-

phages.

Macrophage polarization states are also associated with dif-

ferential activation of intrinsic biochemical pathways, including

those of glucose, lipid, amino acid, and iron metabolism. For

example, M1 macrophages rely on glycolysis and oxidative
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phosphorylation of pyruvate, whereas M2 macrophages exhibit

high rates of fatty acid oxidation (Biswas and Mantovani,

2012). Modifications to macrophage metabolic homeostasis

result in altered energy supply and the production of lipid- and

amino acid-derived mediators, which enable the macrophage

to promote or resolve inflammation and contribute to themainte-

nance of the polarization state. Excellent reviews on this topic

have recently been published (Biswas andMantovani, 2012; Re-

calcati et al., 2012).

Although the classification of these two distinct ATM popula-

tions is useful for experimental purposes, it is important to appre-

ciate that it is an oversimplification. In vivo, macrophages are a

heterogeneous population and can display phenotypes across

the spectrum from anti- to proinflammatory. Furthermore,

ATMs display plasticity and can alter or ‘‘switch’’ phenotypes

in response to changes in the local microenvironment (Li et al.,

2010).

Mechanisms of Inflammation-Induced Insulin
Resistance: Lessons from Animal Models
The most compelling evidence for a mechanistic link between

inflammation and insulin resistance has been provided by mu-

rine studies that, by a variety of models, have repeatedly

demonstrated the etiological role of M1 macrophages in insulin

resistance (see Table S1 available online). Although murine

models strongly suggest a role for inflammation in the patho-

genesis of insulin resistance in human obesity, the fidelity with

which these mouse models translate to man is not proven and

there are several differences in immune response mechanisms

between mice and men. Definitive anti-inflammatory pharmaco-

logical studies will be needed to solidify the applicability of

mouse to human disease and this is described in more detail

later in this review (see Anti-inflammatory Therapeutic Strate-

gies). Nevertheless, several lines of evidence indicate that

inflammation is causally linked to insulin resistance in mice.

First, the ablation of inflammatory CD11c+ myeloid cells (Pat-

souris et al., 2008) or depletion of ATMs by intraperitoneal

administration of clodronate liposomes (Bu et al., 2013; Feng

et al., 2011) improves glucose tolerance in obese insulin-resis-

tant mice, confirming the requirement of this immune cell popu-

lation in the etiology of insulin resistance. In addition, studies

have shown that the polarization state of ATMs is a key determi-

nant of the adipose tissue inflammatory milieu and insulin sensi-

tivity. Accordingly, mice with a myeloid-specific deletion of the

transcriptional regulators PPARg (Hevener et al., 2007; Ode-

gaard et al., 2007) and PPARd (Desvergne, 2008; Kang et al.,

2008; Odegaard et al., 2008), which are critical for the mainte-

nance of the AAM state, display reduced adipose AAMs and

are predisposed to HFD-induced adipose tissue inflammation,

glucose intolerance, and insulin resistance. Finally, ablation of

JNK (Han et al., 2013; Sabio et al., 2008; Solinas et al., 2007;

Vallerie et al., 2008; Zhang et al., 2011) or IKKb (Arkan et al.,

2005) protects mice from HFD-induced adipose tissue inflam-

mation, confirming the importance of these inflammatory

signaling pathways. In these studies, the gene-targeted mice re-

tained systemic insulin sensitivity, demonstrating that inhibition

of inflammatory signals in macrophages is sufficient to mitigate

obesity-induced insulin resistance not only in adipose tissue,

but also in muscle and liver.
ATM Recruitment
Although macrophages are a key effector cell in the propagation

of inflammation, it is clear that adipocytes are an important initi-

ator of the inflammatory response. Adipocytes are not simply a

storage depot for excess energy but are dynamic endocrine cells

that produce and secrete both proinflammatory and anti-inflam-

matory bioactive molecules, depending on microenvironmental

cues. Secretion of these factors can regulate the recruitment

and activation of immune cell populations. During the develop-

ment of obesity, nutrient excess tips the balance toward the

development of a more inflammatory adipocyte state, including

the secretion of potent chemoattractants such as MCP-1 and

LTB4. These chemoattractants provide a chemotactic gradient

for the recruitment of monocytes to adipose tissue, where they

subsequently mature into ATMs. In addition, once recruited,

proinflammatory macrophages themselves secrete additional

chemokines, initiating a feed-forward loop and potentiating the

inflammatory response.

Of the known adipocyte-derived chemokines, MCP-1 and its

receptor chemokine (C-C motif) receptor 2 (CCR2) have been

intensively studied. Several reports have shown that MCP-1 is

secreted in parallel with increasing adiposity in both mice and

humans (Chen et al., 2005; Christiansen et al., 2005; Kim et al.,

2006). In murine models of obesity, adipose tissue expression

of MCP-1 is rapidly induced after the initiation of HFD feeding

and serum MCP-1 concentrations are significantly elevated

after 4 weeks of this regime (Chen et al., 2005). In support of

the MCP-1-CCR2 system playing a role in ATM recruitment,

CCR2- and MCP-1-deficient mice exhibit reduced ATM content,

insulin resistance, and hyperinsulinemia (Gutierrez et al., 2011;

Weisberg et al., 2006), and overexpression of adipocyte

MCP-1was sufficient to induce adipose inflammation and insulin

resistance in lean mice (Kamei et al., 2006). Furthermore,

treatment of mice with a pharmacological antagonist of CCR2

lowered ATM content and improved insulin sensitivity without

altering body mass (Sullivan et al., 2013; Tamura et al., 2010).

However, other studies have shown that CCR2-deficient mice

are not protected from HFD-induced insulin resistance and

macrophage accumulation (Chen et al., 2005; Gutierrez et al.,

2011). The reasons for these discordant findings are unclear,

but the complexity and redundancy of chemokine signaling in

different genetic backgrounds may play a role.

The chemoattractant LTB4 and its specific receptor BLT1

have also been implicated in macrophage recruitment to in-

flamed adipose tissue. LTB4 is synthesized from arachadonic

acid by the 5-lipoxygenase (5-LOX) pathway (Spite et al.,

2011). The expression and activity of key components of this

pathway are increased in adipocytes and M1 macrophages in

obesity (Mothe-Satney et al., 2012). Consistent with this, LTB4

concentration is elevated in the adipose tissue and serum of

murine models of obesity, in correlation with adipocyte size

(Mothe-Satney et al., 2012). Supporting a pathological role for

this increase, genetic deletion or pharmacological inhibition of

5-LOX (Mothe-Satney et al., 2012) or 5-LO activating protein

(FLAP) (Horrillo et al., 2010) protects mice from HFD-induced

macrophage accumulation and associated insulin resistance.

Targeting the LTB4-BLT1 axis more specifically, recent studies

show that genetic depletion of BLT1 protects mice from

obesity-induced inflammation and insulin resistance (Spite
Immunity 41, July 17, 2014 ª2014 Elsevier Inc. 39
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et al., 2011), making this receptor an attractive potential target

for drug discovery.

Neuronal guidance molecules, factors typically studied for

their role in embryonic axon development, were recently found

to participate in the regulation of immune cell function. So far,

four families of neural guidance cues have been implicated

in the regulation of immune cell migration: the netrins, slits,

ephrins, and semaphorins (Funk and Orr, 2013; Wanschel

et al., 2013). One such molecule, Semaphorin 3E (Sema3E),

can act as an adipocyte-derived chemokine to induce macro-

phage recruitment to adipose tissue via its receptor PlexinD1,

expressed on ATMs. Shimizu et al. (2013) observed that HFD

feeding selectively increased Sema3E expression in visceral

adipose tissue, accompanied by a parallel increase in serum

Sema3E levels. Overexpression of Sema3E in adipocytes

induced adipose tissue inflammation and insulin resistance

in chow-fed mice, whereas genetic deletion of Sema3E or

the sequestration of serum Sema3E with a soluble form of

PlexinD1 markedly improved these parameters. Sema3E is

also elevated in the serum of diabetic humans, suggesting

that this pathway may play a role in human disease (Schmidt

and Moore, 2013).

ATM Retention
The majority of studies on ATM accumulation have focused on

the recruitment of monocytes to inflamed adipocytes, but

macrophage emigration from adipose tissue might also be

impaired in the obese state. The resolution of inflammation is a

highly orchestrated process involving several cell types and

mediators. The egress of macrophages out of inflamed tissue

to local lymphoid tissues is an integral part of this process and

is due to the concerted effect of chemo-repulsive forces from

inflamed tissue and chemo-attractive signals from local lymph

nodes (Bellingan et al., 1996; Randolph, 2008). In addition to

classical chemokines, neural guidance molecules also regulate

this process (van Gils et al., 2012).

The concept that macrophage emigration might be impaired

in obese adipose tissue stems from the study of macrophage

retention in atherosclerotic plaques. In murine models of athero-

sclerosis, lowering of serum cholesterol concentrations or trans-

plantation of the aortic arch from atherosclerotic LDL receptor

KOmice to WTmice reestablishes macrophage egress to lymph

nodes, reducing artery wall inflammation and plaque instability

(Feig et al., 2011). These studies have led to the identification

of key pathways that regulate this process. For example, the

chemokine receptor CCR7, which is expressed on macro-

phages, promotes the recruitment of inflammatory macro-

phages toward chemokine (C-C motif) ligand 19 (CCL19) and

CCL21, secreted from lymphoid tissues. Upregulation of CCR7

by atheroma macrophages is necessary for the resolution of

inflammation induced by the correction of dyslipidemia (Wan

et al., 2013).

There may also be signals that emanate from adipose tissue

that prevent macrophage egress. For example, Netrin-1,

secreted by macrophages in mouse atheroma, acts in an auto-

crine/paracrine manner to retard the egress of macrophages

that express the Netrin-1 receptor Unc5b. Netrin-1 is particularly

interesting because, unlike other chemokines, it blocks macro-

phage movement by inhibiting actin reorganization, making cells
40 Immunity 41, July 17, 2014 ª2014 Elsevier Inc.
refractory to further chemokine stimuli. It is likely that expression

of Netrin-1 by adipocytes or ATMs potentiates the inflammatory

phenotype of obese adipose tissue by inhibiting the process of

resolution.

Inflammation in Other Tissue Types
Given the obvious connection between obesity and adiposity,

studies have naturally focused on obesity-driven inflammation

in adipose tissue. However, obesity can also causes inflamma-

tion in other metabolic tissues such as liver, pancreatic islets,

and perhaps also muscle.

The liver is the major source of endogenous glucose produc-

tion, which in the normal state is inhibited by the postprandial

rise in insulin elevations. When the liver is insulin resistant,

this inhibitory effect is impaired while the stimulatory effect of in-

sulin on lipogenesis remains intact, contributing to the develop-

ment of hyperglycemia and hepatic steatosis. Many studies have

shown that obesity induces hepatic inflammation (Lanthier et al.,

2011; Osborn and Olefsky, 2012) associated with a substantial

increase in liver macrophages (Johnson and Olefsky, 2013; Ob-

stfeld et al., 2010). As in adipose, liver macrophages comprise

two populations-resident macrophages, termed Kupffer cells

(KCs) and recruited hepatic macrophages (RHMs). KCs are

long lived and relatively abundant in the liver, representing about

20%–25% of nonparenchymal cell population, in the nonin-

flamed state (Tang et al., 2013). KCs play an important role in

tissue homeostasis, clearing foreign and harmful particles, for

which their location in the liver sinusoids makes them well posi-

tioned. In contrast, recruited macrophages are short lived and

enter the liver in increased numbers during obesity, due to the

secretion of chemokines, particularly MCP-1 (Obstfeld et al.,

2010; Oh et al., 2012). Chemical ablation of phagocytic cells in

the liver (including KCs and RHMs) protects mice from HFD-

induced insulin resistance, demonstrating the importance of

these cells in the development ofmetabolic dysfunction (Lanthier

et al., 2011; Neyrinck et al., 2009). In addition, genetic models

have been used to establish a role for hepatic inflammation in

insulin sensitivity. Depletion or overexpression of IKKb, specif-

ically within hepatocytes, has shown that hepatic inflammation

can regulate local insulin sensitivity, but not peripheral insulin

sensitivity, in muscle and fat (Arkan et al., 2005; Cai et al.,

2005). In obesity, the situation in liver is similar to that in adipose

tissue with increased recruitment and activation of liver macro-

phages, increased inflammatory signaling, and local production

of inflammatory cytokines and chemokines. It is likely that the

inflammatory cytokines exert paracrine effects to cause hepatic

insulin resistance, similar to the situation in adipose tissue (see

Figure 2).

Skeletal muscle is the primary site of glucose uptake, account-

ing for around 80% of insulin-stimulated glucose disposal (Os-

born and Olefsky, 2012). Therefore, decreased muscle insulin

sensitivity in obesity has a profound effect on hyperglycemia in

insulin-resistant individuals. Several studies have shown that

obesity is associated with increased muscle inflammatory gene

expression, along with macrophage infiltration in both mice

and humans (Fink et al., 2013, 2014; Hevener et al., 2007;

Nguyen et al., 2007). These macrophages are largely localized

to the small intermuscular adipose depots (termed marbling)

that arise within skeletal muscle in obesity (Fink et al., 2014).
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Figure 2. Obesity Induces Inflammation in
Adipose Tissue, Liver, and Skeletal Muscle
In the obese state, adipocyte hypertrophy and
apoptosis promote the recruitment of monocytes
to adipose tissue, where in response to inflam-
matory stimuli they differentiate into M1 inflam-
matory macrophages. In muscle, obesity is asso-
ciated with increased extramyocellular adipose,
which is proposed to recruit macrophages to this
site. In the liver, obesity causes increased hepatic
lipogenesis and inflammatory gene expression
that promotes the activation of resident Kupffer
cells and the recruitment of monocytes. M1-like
macrophages secrete inflammatory cytokines that
can induce insulin resistance locally or enter the
peripheral circulation and cause systemic insulin
resistance and inflammation. Adapted from Olef-
sky and Glass (2010).
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However, other reports show no increase in macrophage num-

ber (Bruun et al., 2006; Tam et al., 2012). It is possible that inflam-

matory factors released from these intramuscular macrophages

can exert paracrine effects to cause local insulin resistance, but

this remains to be demonstrated (Figure 2).

Other Immune Cell Populations
Besides macrophages, the representation of several other im-

mune cell populations is altered in obese adipose tissue and their

influence on insulin resistance has been intensively studied.

Several of these immune populations elicit their effects on the

potentiation or repression of inflammation by altering the recruit-

ment or activation state of ATMs.

Innate Immune Cells
Along with M2-like macrophages, eosinophils serve as a nega-

tive regulator of adipose tissue inflammation. Eosinophils are

present in the stromal vascular fraction (SVF) of lean adipose

tissue, but their representation at this site declines rapidly with

adiposity. In the lean state, eosinophils contribute to the repres-

sion of adipose tissue inflammation through the production of

IL-4, a key driver of alternative macrophage polarization (Goh

et al., 2013; Wu et al., 2011). Accordingly, mice deficient of

eosinophils exhibit reduced visceral adipose tissue (VAT) AAM

content, together with increased weight gain, impaired glucose

tolerance, and insulin resistance. Conversely, IL-5 transgenic

mice that display relative eosinophilia have elevated VAT AAM

adipose tissue content and are protected from HFD-induced

obesity and insulin resistance (Wu et al., 2011). Recently a subset

of innate lymphoid cells, termed innate lymphoid type 2 (ILC2)
Immuni
cells, have been shown to be key regula-

tors of eosinophil recruitment (Nussbaum

et al., 2013). In parallel to eosinophils,

ILC2 cells are resident in lean adipose tis-

sue but their content declines with

adiposity. These cells secrete the Th2 cy-

tokines IL-5 and IL-13, which induce

eosinophil maturation and adipocyte ex-

pression of the eotaxin chemokines

(CCL11 and CCL24), potent attractors of

eosinophils (Molofsky et al., 2013; Nuss-
baum et al., 2013). Consistent with this, ILC2-deficient mice

display reduced adipose eosinophil and M2 macrophage con-

tent (Molofsky et al., 2013) and impaired glucose tolerance

(Hams et al., 2013), mirroring the phenotype of eosinophil-defi-

cient mice.

Mature mast cells contribute to microbial defense by the

secretion of granules, rich in histamine, serine proteases, and cy-

tokines (notably TNF-a and IL-1b). Although best known for their

role in allergy and anaphylaxis, one study has shown that mast

cells are rapidly recruited to adipose tissue after HFD feeding

and might contribute to inflammation and insulin resistance via

the secretion of inflammatory cytokines (Liu et al., 2009).

Neutrophils are one of the first responders recruited to adi-

pose tissue after the initiation of HFD feeding, an increase that

is maintained in the chronic obese state, thus representing

another feature of the proinflammatory response to obesity.

Neutrophils circulate in the resting state until they are recruited

to sites of infection or tissue damage by the chemokines IL-8,

complement 5a (C5a), formyl-methionyl-leucyl-phenylalanine

(fMLP), and the chemoattractant LTB4. Upon activation, neutro-

phils secrete antimicrobial factors such as proinflammatory cy-

tokines and serine proteases. One of these proteases, neutrophil

elastase, has been shown to impair insulin signaling by promot-

ing IRS-1 degradation (Talukdar et al., 2012). Mice genetically or

pharmacologically deficient in neutrophil elastase are protected

from HFD-induced adipose tissue inflammation, glucose toler-

ance, and insulin resistance. Conversely, injection of recombi-

nant neutrophil elastase into lean mice provokes insulin resis-

tance (Talukdar et al., 2012). In addition to increased elastase

secretion, the regulation of elastase activity appears to be
ty 41, July 17, 2014 ª2014 Elsevier Inc. 41
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impaired in obesity. The circulating concentration of the endog-

enous inhibitor of elastase, a1-antitrypsin, is reduced in the

obese state, which could potentiate the detrimental effects of

neutrophils on insulin sensitivity (Mansuy-Aubert et al., 2013).

Adaptive Immune Cells
After ATMs, T cells comprise the next largest immune cell

component of adipose tissue, constituting around 10% of the

stromal vascular fraction (SVF) in lean mice, and further

increasing approximately 3-fold in HFD mice. CD3+ T cells can

be classified into two groups dependent on their phenotypic

expression of the surface coreceptors CD4 or CD8. CD4+

T cells can be further subcategorized based on their functional

profile. T helper (Th) 1 cells and Th17 cells are proinflammatory

whereas Th2 cells and T regulatory (Treg) cells are anti-inflam-

matory in the context of obesity. The number of adipose tissue

Th1 cells increases in obesity, whereas the abundance of Th2

and Treg cells, which elicit immunological suppressive effects,

is decreased.

Several recent studies have shown that obesity initiates path-

ogenic adaptive T cell responses that contribute to HFD-induced

insulin resistance. Nishimura et al. (2009) showed that CD8+

T cells interact with ATMs to participate in the development of

obesity-driven adipose tissue inflammation. Genetic ablation

or antibody-mediated neutralization of CD8+ T cells protected

mice from HFD-induced M1 ATM recruitment, adipose tissue

inflammation, and insulin resistance. In contrast, adoptive trans-

fer of CD8+ T cells worsened adipose tissue inflammation and

insulin sensitivity (Nishimura et al., 2009). In vitro, coculture ex-

periments demonstrated a complex interplay between CD8+

T cells, adipocytes, and M1 macrophages. Adipocytes from

obese, but not from lean, mice stimulated CD8+ T cell prolifera-

tion. Furthermore, coculture of adipose derived CD8+ T cells with

peripheral monocytes stimulated chemotaxis and M1 activation,

demonstrating that CD8+ T cells can elicit inflammatory effects

in vivo via the regulation of CAMs.

CD3+CD4+ Th1 cells have also been implicated as positive

regulators of adipose tissue inflammation, via production of

IFN-g, which contributes to the activation of CAMs. Winer et al.

(2009) showed that depletion of Th1 cells with CD3-specific

antibodies protected mice from HFD-induced adipose tissue

inflammation and insulin resistance. In contrast, CD3+CD4+

Th2 cells dampen adipose tissue inflammatory responses. In

support of this, reconstitution of lymphocyte-deficient Rag-1-

null mice with CD4+ cells, which predominately expand to Th2

cells, reduced adipose tissue inflammation and improved

glucose tolerance.

An unusual finding of adipose tissue T cells is their limited T cell

receptor (TCR) repertoire (Nishimura et al., 2009; Yang et al.,

2010). It has been hypothesized that this is a consequence of

local antigen presentation by adipocytes and/or macrophages

to CD8+ T cells or CD4+ T cells, in a MHCI- or MHCII-dependent

manner (see Figure 3; Deng et al., 2013; Morris et al., 2013). This

is postulated to promote the clonal expansion of CD4+ T cells

(Morris et al., 2013) and CD8+ T cells (Nishimura et al., 2009).

Indeed, in vitro primary murine adipocytes (Deng et al., 2013)

or ATMs (Morris et al., 2013) promote the proliferation and acti-

vation of CD4+ T cells in a contact- and MHCII-dependent

manner. Furthermore, the ability of adipocytes and ATMs to
42 Immunity 41, July 17, 2014 ª2014 Elsevier Inc.
stimulate T cells was greater when theywere isolated fromobese

compared to lean mice, possibly because of the higher amount

of MHCII expression by these cells (Deng et al., 2013; Morris

et al., 2013). In line with these findings, mice deficient in MHCII

are protected from obesity-induced adipose tissue inflammation

(Deng et al., 2013).

Along with M2-like macrophages, CD3+CD4+FOXP3+ Treg

cells are important negative regulators of VAT inflammation.

Treg cells are highly enriched in adipose tissue, compared to

lymphoid tissues, but their abundance is significantly reduced

at this site with obesity, creating an elevated Th1:Treg cell ratio

(Feuerer et al., 2009). Interestingly, adipose tissue Treg cells

have a unique TCR repertoire and gene expression compared

to their counterparts in the spleen and lymph nodes, including

greater expression of the PPARg and anti-inflammatory IL-10.

Consistent with their immunosuppressive role, ablation of Treg

cells results in an increase in adipose tissue inflammation, asso-

ciated with increased expression of TNF-a, IL-6, and serum am-

yloid A-3 (Feuerer et al., 2009). Conversely, the in situ expansion

of Treg cells, or adoptive transfer of Treg cells, increased adi-

pose tissue IL-10 expression, reduced adipose tissue inflamma-

tion, and improved glucose tolerance (Eller et al., 2011; Feuerer

et al., 2009; Ilan et al., 2010; Zhong et al., 2014).

Cipolletta et al. (2012) have shown that the unique profile of

adipose tissue Treg cells is driven by their unusual expression

of PPARg (Mathis, 2013). In vitro experiments demonstrated

that PPARg can cooperate with FOXP3 to promote the charac-

teristic adipose Treg cell gene expression profile in naive CD4+

T cells. Consistent with this, the treatment of HFD mice with

Pioglitazone, a PPARg agonist, increased the number of adipose

tissue Treg cells and reduced inflammation. Strikingly, much of

the well-known insulin-sensitizing effect of Pioglitazone disap-

peared in mice specifically lacking PPARg in Treg cells.

B cells, which participate in antigen presentation to T cells,

have also been implicated in obesity-induced adipose tissue

inflammation. During obesity, IgG+ B cells accumulate in VAT

and this is associated with an increase in circulating IgG2c auto-

antibodies that display a unique antigenic profile (Winer et al.,

2011). Depletion of mature B cells results in reduced adipose

tissue inflammation and CAM content, by a T-cell-dependent

mechanism, reflecting the contribution of antigen presentation

by B cells to CD4+ and CD8+ T cell activation (see Figure 3;

DeFuria et al., 2013; Winer et al., 2011). In line with this, the intro-

duction of B cells to lymphocyte-deficient RAG-1-deficient mice

failed to impair insulin tolerance, as was observed in T-cell-

competent recipient mice. Strikingly, adoptive transfer of serum

IgG from HFD, but not NC, mice was sufficient to induce insulin

resistance in B-cell-deficient mice, suggesting that pathogenic

autoantibodies contribute to obesity-induced metabolic disease

(Winer et al., 2011).

Taken together these findings demonstrate that both the

innate and adaptive arms of the immune system actively partic-

ipate in the highly complex regulation of the adipose tissue

and systemic inflammatory environment. Due to the nature of

innate immune cells, they appear to be the initial responders to

cellular stress and can contribute to the further recruitment

and activation of immune cells. However, recent findings sug-

gest that adipocyte-derived antigens can activate the adaptive

immune system, inducing the local clonal expansion T cells
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and B cells that participate in the maintenance of the inflam-

matory response.

Anti-inflammatory Therapeutic Strategies
Because chronic tissue inflammation is a key etiologic factor in

insulin-resistant states, therapeutic attempts to interfere with

proinflammatory processes have potential importance. Several

clinical approaches have already been tried with varied degrees

of success. For example, salicylates have been shown to have

anti-inflammatory effects, possibly by inhibition of IKK through

poorly defined mechanisms. Indeed, in a mechanistic-based
Immuni
clinical study, Hundal et al. (2002) demon-

strated that high-dose salsalate treat-

ment of type 2 diabetic patients led to

improved systemic insulin sensitivity, as

measured by euglycemic hyperinsuline-

mic glucose clamp studies, as well as

substantial glucose lowering. This proof-

of-concept study led to a larger clinical

trial, TINSAL-T2D (targeting diabetes us-

ing salicylate in T2D) study, which has

shown that treatment of type 2 diabetic

patients with salsalate for 48 weeks

reduced hemoglobin A1C by 0.46%, indi-

cating the therapeutic potential of these

kinds of approaches (Goldfine et al.,

2013).

Although the TINSAL trial results sug-

gest the potential benefit of anti-inflam-

matory strategies in metabolic disease,

the other approaches that have been

tested in clinical development have
been unsuccessful or, at best, of only modest benefit. Because

the blood levels of TNF-a and IL-1b are elevated in obesity,

anti-TNF-a and anti-IL-1b therapies have been studied in the

clinic. Although anti-TNF-a antibodies have been effective in

rodent models of insulin resistance and diabetes (Hotamisligil

et al., 1993), they have produced only marginal beneficial ef-

fects in human T2D (Bernstein et al., 2006; Dominguez et al.,

2005). The reasons for this are unclear but may relate to pene-

tration of the therapeutic agents to tissues sites of TNF-a ac-

tion. On the encouraging side, one recent study has shown

that patients treated with etanercept, a TNF-a inhibitor, for
ty 41, July 17, 2014 ª2014 Elsevier Inc. 43
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inflammatory conditions such as rheumatoid arthritis and psori-

asis demonstrated a decreased risk of developing T2D diabetes

(Solomon et al., 2011). Thus, it would seem that future clinical

trials are still needed to determine whether TNF-a is a useful

target for treatment or prevention of insulin resistance and

T2D. Therapies directed against IL-1b have also been explored,

using anti-IL-1b antibodies, IL-1b receptor antagonists, or the

natural inhibitor of IL-1b, IL-1RA. In general, all these ap-

proaches resulted in only small reductions in circulating

glucose concentrations with no real evidence that they improve

insulin sensitivity (Larsen et al., 2007; van Asseldonk et al.,

2011). The glucose-lowering effects of these agents seem

to involve modest improvements in b-cell function, potentially

due to decreased islet inflammation, because IL-1b might

have a deleterious effect on b-cell activity. Other anti-inflamma-

tory strategies have been employed to inhibit recruitment of

inflammatory macrophages to sites of inflammation. This is a

mechanistically logical approach, because it targets one of

the etiologic factors in obesity-induced inflammation, namely

recruitment of ATMs to adipose tissue and liver. Indeed, a

recently completed phase II clinical trial showed that when add-

ing a CCR2 antagonist to a stable metformin treatment

regimen, modest but positive glucose-lowering effects were

achieved.

Themarketed antidiabetic thiazolidinediones (TZDs, e.g., rosi-

glitazone and pioglitazone) are PPARg agonists that are well

known to produce insulin-sensitizing effects. Although a full

understanding of how these agents induce insulin sensitization

is lacking, the beneficial actions can be partially explained by

the anti-inflammatory effects of TZDs. PPARg activation broadly

inhibits proinflammatory pathways, leading to decreased ATM

content, increased adipose tissue eosinophil numbers, and

increased differentiation of anti-inflammatory Treg cells (Ahma-

dian et al., 2013; Hamaguchi and Sakaguchi, 2012). TZDs have

many other potential mechanisms for insulin sensitization, such

as induction of adiponectin, FGF21, redistribution of fat stores,

etc., so the exact contribution of the anti-inflammatory effects

to overall systemic insulin sensitization is unknown. Although

still early, these studies point to the potential for more targeted

and specific anti-inflammatory therapeutics for the treatment of

insulin resistance and T2D.

Concluding Remarks and Future Directions
Dramatic progress has been made in recent years in our under-

standing of the unifying mechanisms that regulate inflammation

and insulin resistance. In particular, we now have a much

greater appreciation of the complex interactions that occur be-

tween macrophages and other immune cell populations that

can direct ATM polarization. This development has uncovered

several processes that can potentially be exploited therapeuti-

cally to dampen the inflammatory response of effector ATMs.

For example, inducing the polarization of ATMs toward an M2

phenotype, by direct effects on macrophages, or indirectly

targeting other immune cells, is likely to have potent insulin-

sensitizing effects. In addition, omega 3 fatty acids are well-

known anti-inflammatory agents, and GPR120 has recently

been identified as the omega 3 fatty acid receptor/sensor (Oh

et al., 2010). Pharmacologic activation of this receptor leads

to potent anti-inflammatory (Hudson et al., 2013), insulin-sensi-
44 Immunity 41, July 17, 2014 ª2014 Elsevier Inc.
tizing effects, which appear targeted toward the mechanisms

specifically related to insulin resistance. Therefore, this recep-

tor has emerged as a drug discovery target for these purposes.

Another key development is the identification of chemokines,

such as LTB4, Sema3E, CCR7, and Netrin-1, that contribute

to ATM recruitment and retention at sites of metabolic inflam-

mation (Shimizu et al., 2013; Spite et al., 2011; van Gils et al.,

2012). These findings suggest that treatment with a com-

bination of chemokine inhibitors may have insulin-sensitizing

effects.

New diabetes therapies are needed because the current

therapeutic options to target inflammation have failed to provide

a clinically significant improvement in insulin sensitivity. The

reasons for this are unclear, but might be due to redundancy in

inflammatory signaling. For example, targeting TNF-a or IL-1b

alone leaves several other inflammatory pathways that can still

activate TLR4, TNFR, and IL-1R. A more effective approach

might be to target the steps in inflammatory pathways that are

more specific to inflammation-induced insulin resistance. Such

approaches might be more efficacious and avoid unwanted

side effects. This latter point is of key clinical importance,

because one must always be concerned that an anti-inflam-

matory therapy could potentially cause a drug-induced state of

relative immunodeficiency leading to susceptibility to infections,

as well as other unwanted side effects.

Despite recent advances, there are still a number of unan-

swered questions in the field of immunometabolism. The relative

contribution of inflammation to systemic insulin sensitivity in man

is still unproven. Do macrophages that are recruited to muscle

and pancreatic islets upon HFD or obesity induce local skeletal

muscle insulin resistance or b-cell dysfunction, or are they simply

an indicator of late-stage disease? What are the inflammatory

mediators that directly cause insulin resistance and through

what mechanism can reigning in what has been termed ‘‘metain-

flammation’’ at its earliest stages prevent disease onset? A strik-

ing feature about many of the genetic studies in mice is that

disruption of adipose tissue inflammation is sufficient to cause

systemic insulin sensitization. Therefore, how do events in

adipose tissue lead to beneficial changes in liver and muscle,

with respect to improved insulin sensitivity? Finally, although

obesity-induced ATM accumulation and inflammation in adipose

tissue causes metabolic disease, there must be a homeostatic

purpose for these events in the first place. Answering these

questions would enable the development of more effective,

appropriately targeted therapies.

It is likely that in the next few years rapid developments in the

field of immunometabolism will continue, accompanied by the

discovery of new targets, eventually leading to better therapies

for insulin-resistant states in man.
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